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Abstract

This work concerns the stability of piles with rectangular cross section, made of a no-tension material with limited
compressive strength and deformability, subjected to an axial load acting within the cross section but outside its middle
third (large eccentricity). The differential equations obtained have been solved explicitly, and their solutions have al-
lowed us to describe the stability characteristics of the pile through graphical representations.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The stability of masonry piles subjected to eccentric axial loads is a matter of a good deal of importance
to applications, though in practice the slenderness involved is apparently very modest. This fact is due to
the non-linear behaviour of the material, which is assumed to exhibit zero tensile strength, bounded
compressive strength and deformability, and values of elastic moduli very much lower than those of
concrete.

The load eccentricity may cause lateral deflection of the pile and a consequent increase in the bending
moment. Cracking of the load-bearing sections may then induce a gradual reduction of the bending stiffness
of the structure, until failure ensues. Such a mechanism may be triggered by either progressive instability, or
because the material’s limit strain has been exceeded, both of which situations would be induced by the
growing deflection of the beam.

The problem is a particularly complex one because of the inherent geometric and constitutive non-
linearities and, to date, has been solved analytically only by resorting to extreme simplifications. The
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earliest studies, dating back to the 1940s, treated masonry as a no-tension material with non-linear response
and infinite compressive strength, and represented the beam-column through a one-dimensional model
under the assumption that its cross section remains plane and orthogonal to the axis of the bent pile (see
Angervo, 1954; Chapman and Slatford, 1957; Frisch-Fay, 1975, 1981; Sahlin, 1971). A particularly inter-
esting solution is that explicitly deduced by Yokel (1971) for a prismatic beam-column made up of a no
tension material with infinite compressive strength loaded by an axial force applied at both ends.

In the present work Yokel’s results have been generalised to the case of a no-tension material with
bounded deformability and compressive strength. Although quite complex because of the introduction of
further constitutive non-linearities, such a generalisation makes this model more suitable to describing the
stability of some masonry piles loaded by a normal force acting eccentrically. As in Yokel (1971), we have
limited the study to piles with rectangular cross sections subjected to a normal force acting within the cross
section, and outside its middle-third; the case of a normal force acting within the middle third of the pile’s
end sections will be taken up in a subsequent work.

Firstly, we present the main characteristics of the original constitutive equation and we define the dis-
tribution of the axial stress component in the section as a function of the internal forces. A further de-
velopment of this topic is presented in Zani (2001).

Subsequently, the differential equation for the deformed shape of the compressed fibre of the pile is
developed. Explicit solution of this equation yields a load—displacement relation from which we can deduce
the stability characteristics of the pile, suitably represented by response curves. Then, we determine to what
extent an imposed limit to the maximum permissible strain on the material under compression reduces the
admissible range of the response curves obtained. Finally, we present an application of this model and show
how to calculate a load reduction factor, useful for checking masonry column subjected to eccentric vertical
loading.

2. The domain of admissible internal forces in the case of a no-tension material with limited compressive
strength and deformability

Firstly, we need to determine the distribution of the axial stress component in any given section of the
pile (Fig. 1(a)) as a function of the axial force, N, and the bending moment, M, under the assumptions
dictated by the constitutive model for uniaxial stresses shown in Fig. 1(b).
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Fig. 1. (a) Pile section loaded by a normal force acting with eccentricity e. (b) Material constitutive model for uniaxial stress.



A. De Falco, M. Lucchesi | International Journal of Solids and Structures 39 (2002) 6191-6210 6193

Let us indicate as d and / the external dimensions of any given cross section of the pile, and set

— M
and M =-——, 1
hdaog hd?a, (1)
with ¢, (<0), the limit compressive stress of the material. It is well known that, in order for the axial
component g of the stress to satisfy the inequality 6o < ¢ <0 at each point in the section, (N, M) must
belong to the region

N:

Q_{(N,M)Ogﬁgl, ngg(ﬁl)}. 2)

Under the Euler-Bernoulli hypothesis, for each (N, M) € Q, the distribution of the axial stress component
in the section can be represented as in Fig. 2. It can therefore be thoroughly characterised by parameters a
and b, which represent the lengths of the segments where the stress is constant and linear, respectively. By
reason of symmetry, we can limit ourselves to specifying parameters @ and b for the couples (N, M), be-
longing to the region Q" = {(N,M) € Q|M > 0}.

To this end, it is helpful to consider the partition of Q" made up of the open and disjoint subsets shown
in Fig. 3. These are bounded by the curves

F:{(N,M)|0<N<1,M:%(N—l)}, 3)
s dwmo<v<t - 2+ 1xl, @)
2 3 2
—— 1 — — 2, 5_ 1
= —<NK = —= —-N ——
p={ @I <N<1, M- ¥ 2N - 5
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rzz{(N,M)|§<N<1,M:6(1—N)}. (7)

To N

Fig. 2. Stress distribution in the pile section.
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Fig. 3. Stress distribution in the regions of the admissible range.
In fact, it can be verified that

_ dN d
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(N7M)€Q2:>a:0 and b:3d(§——>, (9)
o d(—1+N+6M 9d(—1+N +2M)’ _
W77 € 0 = a =\ M) g = CLENADDT ), (10)

2(1-N) 8(1 -N)
(N,M)GQ4:>a—d<N—\/—3N2+3N—6M> and b:Zd\/—3N2+3N—6ﬁ7. (11)

In order to account for the material’s limited deformability as well, we assume the constitutive relation
described in Fig. 4(a), where ¢, (<0) is the limit compressive strain. For ¢ = ¢,, cracks are produced in the
more compressed portion of the section.

Let E be Young’s modulus for the material under compression; under the Euler—Bernoulli hypo-
thesis, with ¢ = g¢/E the strain corresponding to the limit compressive stress on the section, we have
(Fig. 4(b))

. 00 (atb)
m E b b
where ¢, 1s the minimum strain on the section.
Therefore, by setting

(12)

&
== 1
=2 (13)
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Fig. 4. (a) Constitutive equation of the material for monoaxial stress states. (b) Strain pattern in the cross section.

for (N,M) € Q, in light of (11) and (12) and with ¢, = ¢,, from (13), we obtain the relation

3N(2k —1)° — 4N (3k2 — 3k + 1)

M= 14
6(2k — 1) (14)
While, for (N, M) € Q,, in light of (10) and (12), once again from (13) we obtain
o (1-N) (20/(1=N)(2k—1)~N)+(1-3k)+2N)
M = — 6(1—F) for k> 1, (15)
L(1-N) for k=1.

The curves delineated by (14) and (15) on the plane (N, M) have been plotted in Fig. 5 and represent the
boundary of the admissible range for each value of k.
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Fig. 5. Boundary of the admissible range for each k.
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Of course, for £k = 1, Egs. (14) and (15) coincide with (4) and (5), respectively, the equations of curves «
and f, while for k tending towards infinity, Eq. (14) tends to coincide with Eq. (3), the equation of the
boundary I' of domain Q.

3. The pile loaded by an eccentric axial load

Let us now consider a pile of height 2L, made up of a no-tension material with limited compressive
strength and deformability, loaded by an axial load N applied at both end sections, parallel to, and at
distance e from the undeformed axis of the pile (Fig. 6). Both extremities are restrained with two hinges: as
shown in Fig. 6, the hinge where the load N is applied has the degree of freedom of vertical displacement.

Assuming, as always, that the cross sections remain plane and orthogonal to the deformed axis of the
pile, the strain has a linear pattern on the section. Moreover, since we suppose the load N to be acting
outside the middle third of the top section, we have d/6 < e < d/2, and cracking occurs in all sections.

Let u be the distance of the load’s line of action from the compressed edge of the section; because of
bending, u varies along the pile’s height and attains its maximum value u; at the summit, and its minimum
uy in the middle section, where the stress at the compressed border of the section moreover reaches its
maximum value.

Fig. 6. Scheme used to study the pile.
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Following the procedure set forth by Yokel (1971), in order to obtain the deformed shape of the pile, it is
more convenient to refer to the compressed border of the pile, rather than its barycentric axis. To this end,
let us adopt the coordinate system (o, x,y) shown in Fig. 6, in which the origin is at the middle and the x-
axis is tangential to the most compressed fibre of the pile and parallel to the load’s line of action. Moreover,
we set

y(x) = u(x) — uo, (16)

so that y(L) = u; — up, where the value of u; = d/2 — ¢, is known.

During the loading process, as the load intensity increases, all sections become cracked.

If failure does not come about by instability due to buckling of the beam, the compressive stress will
reach the limit value gy, first at the middle section and subsequently in a growing segment of the pile ex-
tending upward to the summit.

Now, let Ny and N; be the values of N in correspondence to which the compressive stress reaches the
value of g, at the middle section and at the summit of the pile, respectively. By virtue of the hypothesis that
the cross sections remain plane and orthogonal to the undeformed axis of the pile, together with the as-
sumed elastic response of the material all the way up to the maximum compressive stress gy, we can easily
verify that

3 Uy
14 .

so that N, > N, always holds. Finally, let N, be the maximum value of N compatible with the ductility
expressed by the ratio &, that is, the value in correspondence to which the ultimate strain ¢, is equal to ke.
By substituting M = N(d/2 — u) into (14), with the positions (1), we obtain

_ 6(2k—1)°

No=35—, N.=

=7 18
T3k 17d (18)
As k tends to infinity, N; tends towards the value
N —oH
Nu=2—. (19)

By equilibrium considerations, it is an easy matter to deduce that &, is the value of N in correspondence to
which the stress distribution at the middle section takes on the constant value ¢(. N, is thus the maximum
value that N can attain, and this comes about when the internal forces (N, M) at the middle section of the
column represent a point on the boundary I' of the admissible domain.

Contrary to N, the values of N,, N, and N, cannot be determined a priori once we know the load ec-
centricity at the summit, the geometrical dimensions of the pile and the mechanical characteristics of the
material. However, their values can be deduced through a relation between N and uy, which we now intend
to determine.

For N < N,, the compressive stress does not attain the maximum value g, in any section of the pile;
under such circumstances, the stress distribution in the section is typical of region €,, and Yokel’s relation
(see, for example, Yokel, 1971) between N and u, holds:

2
N :0.40528a[\/1—a+aln (w/l_“ﬂf)] , (20)
Neq o o

where Noq = —9n*Ehu; /16L? is the critical load of the compressed zone of the top section and o = uy/u; is a
measure of the relative lateral displacement between the middle and the end section. The behaviour of
N /N as a function of o is shown in Fig. 7.
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Fig. 7. Curve obtained by Yokel (1971) (Eq. (20)).

It can be seen that every value of N /N has two corresponding values of o; in particular, for N/Ngq = 0,
o = 1 represents the undeformed case (uy = u;), and « = 0 the case in which u, vanishes, which happens
when the load’s line of action is tangent to the compressed border of the middle section. In the right branch
of the curve, that is, for 0.625 < o < 1, which corresponds to a condition of stable equilibrium, we may
observe that as N increases, the deformation of the pile increases as well; thus u, decreases, and with it, o as
well. For o = 0.625, the maximum load, N, = 0.285N,q bearable by the pile is reached. Values of N/Nq in
the interval 0 <o < 0.625 are lacking of interest to applications because they correspond to large defor-
mation values that occur for loads smaller than the critical one, in an unstable equilibrium state.

Let us now suppose that N = N, and denote s as the maximum ordinate at which the stress value at the
section’s compressed border equals gy.

Note that for Ny < N < Ny, s < L. Thus, the half-pile is divided into the two segments, 0 < x <s and
s < x < L, each of which is characterised by a local load distribution typical of regions Q4 and ,, re-
spectively (see Fig. 8). For N > N; we instead have s > L, and the stress distribution in all sections of the
pile is that typical of region Q.

Denoting u(s) as the distance of the load’s line of action from the compressed edge of the section at
height x = s, from considerations of equilibrium, it follows that

2
u(s) :§Nd. (21)
During the loading process, the internal forces relative to any given cross section describe a curve on the
plane (N, M). Fig. 9 shows curves ¢y and ¢, for the middle and top sections, respectively.

It can be seen that as N increases, the concavity of curve ¢, turns upward up to the value N, which
represents the maximum load the pile can bear under stable equilibrium conditions. The subsequent branch
then shows decreasing values of N.

The loading process finishes when curve ¢, intersects the ductility curve relative to the characteristic
value of k for the material; thus, we assume that the crisis of the pile takes place, as soon as the compressive
strain at the middle section attains its limit value ¢,. In particular, for £ = 1, curve ¢, ends on «, while for
k = oo, it ends on the boundary I" of domain Q*.

Thus, in this model failure is assumed to take place either because the limit compressive strain is reached
or by instability, depending on whether ¢ intersects the material’s characteristic k-value curve for N < N,.

The next step is to determine the relation between load N and distance u, for N > N, as well.
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Fig. 8. For N > N, the pile is divided into two segments, each corresponding to a stress distribution.
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Fig. 9. Curves ¢ and ¢; relative to the middle and top sections.

To this end, let us set

_Ju fors<x<L,
u—{u2 for 0 <x<s, (22)
and consider an infinitesimally small element of the pile set at height x (Fig. 10). The length of the com-
pressed zone is equal to a + b, with a and b determined by relation (11).
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Fig. 10. Infinitesimal beam element in 0 < x <s.

From simple geometrical considerations, we can deduce that

dd e,
dx a+b’
where, as usual, ¢, is the strain of the most compressed edge, and d+ is the relative rotation between the two

end sections of the element.
By virtue of the hypothesis that all sections remain plane, we have

~ (a+b)
Em = & P (24)

where ¢, is the strain of the fibre at distance b from the neutral axis, and

(23)

for s <x<L (region ©,) and ¢, = % for 0 <x<s (region ), (25)

Omin

&p =

with o, the minimum compressive stress in the section.
Expressing d¢/dx as a function of p, the curvature radius of the compressed pile fibre, we can obtain its

change in slope
dv (1 —g,)
et SV 2
dx a+b+p (26)

By equating (26) to (23) and neglecting ¢, with respect to the unit, in light of (24) and (25), with
Omin = 2Nday/b, we have
1 Eb? . Eb .
p==-=— fors<x<L (region ;) and p=— for 0<x<s (region Q). (27)
2 NdO'() [}

Moreover, as usual, let
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1 d?y
= 2
p dx?’ (28)
where y(x) = u(x) — up is the transverse displacement of the compressed fibre. In light of (11) and (9), from
(27) we can deduce
d’u; _ 2Ndoy 1
dm_ f <L,
dx2 9E u% ors<x ( )
d2u2 () 1 29
-2 Y for0<x<s,
det - 2Ed | [3N(2m _N)

with the conditions

dM2 duz 2

20 =0, L2 =00s), wls) = 2N, (30)
2 du1

ui(s) = §dN, E(S) =9(s), u(L) =uy, (31)

(see Fig. 8), where 9(s) represents the rotation of the fibre at the compressed edge for x = s.

Conditions (30); and (31); respectively impose that the tangent to the compressed border of the pile at
the middle section be vertical, and that the distance of the load’s line of action from the compressed edge at
the top section be u;. Both conditions assign the variables known values in a known position. Relations
(30); and (31), dictate continuity of the fibre at the compressed border at connection point x = s, and assign
known values at sections whose positions are unknown. Finally, in (30), and (31),, which express the
continuity of fibre rotation at the compressed border for x = s, both the assigned values and the sections’
positions are unknown.

As our goal is to determine the relationship between the load parameter N and uy, we do not integrate
Egs. (29), and (29), with conditions (30) and (31). Instead, we first integrate Eq. (29), with condition (30),,
supposing the distance i, of the load’s line of action from the compressed border of the middle section to be
known. In this way we obtain, du,/dx and x as a function of u, for every N. We thereby deduce the values
of J(s) and s from conditions (30), and (30);.

Subsequently, Eq. (29); will be integrated with the two conditions, (31); and (31),, and x determined as a
function of ;. Finally, by imposing condition (31)s, i.e., the top-section condition, we can arrive at the
desired relation between N and wuy.

Thus, multiplying both members of (29), by 2du,/dx and integrating between 0 and x with condition
(30), and the additional condition u,(0) = u,, we obtain

(%) -5 55)

from which
dx

“ )

Integrating this equation by separation of variables, we can casily obtain

o) E (- ) ()

(33)
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Now imposing condition (30);, we obtain the value of x in correspondence to which compression g is
reached only at one point of the section’s compressed edge. We thus have

Now, from (32), in light of (35), and by imposing condition (30),, we can deduce the rotation of the section
at height s,

9(s) = _;\/—‘;_N<\/§—,/2%—N>. (36)

In order to integrate (29);, we multiply both members by 2du;/dx and impose condition (31),, thereby
obtaining

du1_ 4N0’0 3 d 5
E‘\/ 9 E (2N u1>+19' G7

Using the method of separation of variables, we integrate both members of (37) between s and x with the
change in variable

= Ui — dff (38)

where 7 = 3(—20y + 3E¥*) and f = —4Na,.
Integrating the second member of (37) by parts, and setting

L ! + ! (39)
L—y2 2(14.pt)  2(1— /1)’
in light of (31);, we obtain
1 N IR
x:3d\/EE[t<2—>+—ln +\/?} + s, (40)
y 2 —1 2y 1=/t )
which, by virtue of (38) and (39) gives
‘= —aVE 4N, \/(—600 + 9E19?uf + 4N aoduy
( — 20’0 + 3E’l92) —4dNO'0
_ uy (x)
1 V(=660 + 9EV*)u; + 4dNay + /(—600 + 9ED?)u, e @D

+ In
2,/3(— 20, + 3E) ‘\/(—600 ¥ 9OEP)u, + 4dNay — /(=600 + 9ED )iy
uy (s)
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By substituting the integration limits, we have

L aia, [ [Y/iom o s
= — E— N
X (_20_0 4 3E192) —4dNO'o

1 n V(=600 + 9E9?)u; + 4dNao + /(—60y + 9EP?)u,
+ —
24/3(—200 + 3E0?) ‘\/(—600 + 9ED?)u; + 4dNay — \/(—6ay + 9Eﬁ2)u1]

IVE 1 | VONED? + \/( — 20y + 3E9?)2N

- + n—-— — +s. (42)
200 2,/3(— 20 + 3EV?) ‘\/6NE192 — /(200 + 3Ez92)2N’

By then imposing condition (31)s, relation (42) furnishes the desired relationship between N and uy,

_ VB 4dNo, V(=600 + 9E192_)u% +4dNoyu;
( - 20’0 + 3E192) —4dNO'0
1 V(= 669 + 9E9?)u; + 4dNay + /( — 60 + IEP)u,

+ In
2/3( - 200 + 3EP?) ’\/( ~ 600 + 9EP)u; + 4dNao — /( — 6oy + 9E)u;

_OVE N 1 . VONED? + /(- 20 + 3E9?)2N
200 2\/3( =20y + 3EP?) ’\/6NE192 /(=200 + 3E1‘}2)2N‘

+5—L=0.(43)

The last relation can be conveniently written in dimensionless form. In fact, by indicating as Ny = n’EJ /4L?
the critical Eulerian load of a pile made of linear elastic material (Fig. 8), we have

—
with
N 2L
"o T TVE (43)

where parameters n and 1 are dimensionless: the first expresses the ratio between applied load and the
corresponding Eulerian critical load, while the second, which summarises all the beam’s geometric and
mechanical properties, can be interpreted as a measure of its slenderness.

In light of (44) and (45), and by putting

Oy = oy =

i el ——— 46
d’ d’ " O-O, ( )

relations (35), (36) and (43) become

2 0 (m|1 21 1 VA
s=39m 2 5(6‘ 2°‘°W‘ﬁ)(‘§+5 2% 0 12 | (47)
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11 2
I(s) = %(5—2 2“0W—E)- (48)

: N
/

(49)
And finally, by setting
2 1 L = n2n?
=1-24/200—— — — —-_2 L=
o =R bl 0 d a3z (50)
from (47)-(49), we have
Yy [m 13
s=dy §(3ﬁo—2)<?—5ﬁo), (51)
_ BB —2)
A= (52)

3

’/\/’_ﬁ{_z 950“%—WL+ 1 ln(\/9500%*3’*\/9/30%)(\/3/30*2*\/3_/30)_ (/3 2)}_520-
6p, Y 3By (V/9Bo—7—/9Bo2) (v/3Bo — 2+/35o) 0

(53)

Of course, in view of (17), (45) and (46), from (53) we deduce that 6 = 0 for N = N; and therefore s = L.
For N < N, relation (20), obtained by Yokel (1971) for the case of a normal force acting outside the

middle third of the section, with positions (44)—(46), can be written in dimensionless form, for which we
obtain

n(og) = 6/ 3a oy {1 /dL —% _|_@ In (1 [r— % + \/“_»L)} (54)
T oy oy Olo Olo
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n2

Fig. 11. Analysis of a response curve for A = 0.325 and ¢, = d/3.5.

The response curves, respectively expressed as (53) and (54), when N > N, and N < N,, are presented in
Fig. 11 for o; = 55 and k = oo.

In particular, observe that, for N = 0, we have oy = o;, and the pile remains undeformed. As N increases,
we first move along curve X, delineated by (54) for a material with infinite compressive strength, until the
value N = N, is reached. This occurs at n* = n} where

nt = n—}v o, (55)

as can be deduced from (17), with the help of (44)-(46). Then, for any given value of A, curve X loses its
meaning when it intersects the line of equation n?> = (18/n%) .

For N > N, (that is, for n* > n}), the relation between n* and « is represented for each value of 4 by a
curve, y, implicitly defined by Eq. (53).

The maximum value n2 of 7 is reached when o = o, and this is the load value at which the beam
collapses due to equilibrium instability before the section can undergo crushing.

The couples (o, nﬁ), relative to different values of A, may determine a point of either X or A. In the first
case, instability of the pile equilibrium takes place when the stress distribution in the section is typical of
region €,, however without the stress’ reaching the value oy (n., <np) in any section whatsoever. In the
second case, instability of the pile equilibrium takes place when compression o is attained in the pile
sections next to the middle and the stress distribution is typical of region Q.

The part of the curve with oy < o are of no concern to applications because it corresponds to large
deformation values occurring for loads below the critical load, in a state of unstable equilibrium.
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For small enough values of A, curve y ends when the stress distribution at the middle section of the
column takes on the constant value gy. This corresponds to the extreme value V,, where y intersects the line
whose equation is

24
n = Eﬂza(); (56)

as can be deduced from (19), with the help of (44)—(46).

Under such circumstances, the locus of points whose coordinates (o, nﬁ) are obtained from the inter-
section of y with the line of Eq. (56) is the curve 4 in Fig. 11. The explicit equation of A can be obtained by
substituting the expression for 4, deduced by Eq. (56), into relation (53). For large enough values of /, the
end points of curves y belong to 2.

Moreover, it can be observed that, for a fixed value of o;, a value 2 exists, such that the critical load for
J. > J is reached while still along curve X. In fact, what occurs is that beyond a certain value of slenderness,
collapse of the beam comes about due to instability of the equilibrium, without however the stress ever
reaching the value oy in any section whatever.

Finally, with increasing slenderness /A, the response curves y tend to move along ever more extensive
segments of curve X, until they are finally superimposed upon it. In other words, from a certain value of 1
onwards, the beam behaves as if it were made of a material with infinite compressive strength.

The considerations advanced up to now are valid in the event that the ductility parameter k has an
infinite value, as was assumed when drawing Fig. 12, where families of response curves have been repre-
sented for ¢, = d/3.5 and different values of .

Instead, when & has a finite value, the validity of curve y ends at its intersection with the limit curve y, the
locus of points corresponding, for any value of 4, to collapse of the pile by attainment of the ultimate strain.

For any given value of ¢; the implicit form of the expression for curve y, corresponding to any given
value of k, is obtained (in a manner analogous to A) by calculating the coordinates of the intersection point
between curve y and the line of equation

0.08

0.05 1
0.04 -~ | 030

0.03 4 <4 < =025
0.02 1~ e N 2=0.20

0.01 +

| | | | | | | | | L
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 O=

Fig. 12. Response curve family (n? versus «) for different values of 2 and for ¢, = d/3.5.
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, 22 T202k—-1)
nw=——-:
™ 1 432k — 1)

obtained from (18) with the help (44)-(46).

The family of curves shown in Fig. 13 describes the behaviour of the pile for £ = 1.5 for two different
values of eccentricity at the summit: ¢, = d/3.5 and e, = d/6.

It can be noticed that, regardless of the eccentricity value e;, the dashed half-lines of Eq. (57) pass
through the extreme points of the y curves corresponding to the same value of A.

From the curves in Fig. 13, we can plot the stability curves illustrated in Fig. 14, which show the be-
haviour of the ratio between failure load N, and load N* = dho, as a function of parameter /. The collapse
load is represented by the value of either the limit load for instability or the breaking load due to reaching
the limit strain, whichever is lower.

In view of (54), with positions (44)—(46), we have

N. mn
N+ 12 )%’
where n? is the ratio between the collapse load and the Eulerian load of the pile.
For each value of ¢;, we present two curves, relative to the values k£ = 1 and k = oco. It can be seen that,

for slenderness values tending towards zero, load N, tends towards the collapse load because the limit strain
value is reached. In particular, for k£ = 1, failure occurs when the maximum stress o is reached at one end

%o, (57)

(58)

Fig. 13. Response curves of load—displacement corresponding to the eccentricity values e, = d/6 and e, = d/3.5, for k = g /¢, = 1.5.



6208 A. De Falco, M. Lucchesi | International Journal of Solids and Structures 39 (2002) 6191-6210

2 2
Nc m-nc

N* 12 ¥

0.8

|
l
l
T \I } T
0 0.10 020 030 040 050 060 070 0.80 090 1.00 1.10 120 1.30

A= 2L (%
d \E

Fig. 14. Stability curves corresponding to the eccentricity values e, = d/6 and e, = d/3.5 for k =1 and k = oo.

of the middle section, and we have N,/N* = 3/2ua;. These curves are analogous to those calculated by
Angervo (1954) and generalised by Sahlin (1971), under the hypothesis that the material exhibits linear
elastic behaviour under compression up until crushing. Instead, for £ = oo, failure comes about by crushing
when the stress distribution in the compressed section is constant at a value of oy, and N./N* = 20;.

For increasing values of slenderness, the ratio N./N* decreases, and for each value of ¢, there is a value
of A beyond which the two curves relative to £ = 1 and k£ = oo coincide. Clearly, the interval between these
two curves contains the situations relative to all values of £ > 1.

Once these curves have been plotted for a large enough number of values of eccentricity ¢; and para-
meter k, as the geometric (d,h,L) and mechanical (E, oo¢,) characteristics of the beam are known, it is
possible to calculate the critical load value as a function of A for each value of the assumed limit strain.

4. Applications

By way of example, we shall now illustrate application of the model to the study of compressed piles. To
this end, let us consider the case of a pile, constrained as in Fig. 6, whose features are typical of Italian
renaissance cloisters and arcades.

Given the following parameter values:

2d=5m, b=d=04m, oy=6MPa, E=6000MPa,

the corresponding slenderness value is A = 0.39 and the critical Eulerian load is Ny = 168.4 x 10* N.

Now, we intend to compare the limit load of the pile in the case of infinite compressive strength with that
for limited compressive strength, for both infinite and limited ductility and the two values of load eccen-
tricity, e, = d/6 and e; = d/3.5. For the case of infinite compressive strength, with the help of the curves in
Fig. 13, we obtain

Ny = 89.7 x 10* N for e, = d/6,
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Ny =464 x 10* N for e, = d/3.5.
In the case of limited material compressive strength, from the curves in Fig. 14, for £ = oo we obtain

N =18 x 10°N  for e, = d/6,

Ne=9.6 x 10N for e, =d/3.5,
and for k =1,
Ng =155 x 10*°N  for e, = d/6,

Na =89 x 10°N  for e, = d/3.5.

We may observe, that at least for the two analysed cases, introduction of a limit to the material’s com-
pressive strength has a considerable effect on the critical load of the pile, more than further limiting its
deformability.

In applications, in order to perform a simple check of the stability of piles subjected to eccentric axial
loads, we apply the so-called “capacity reduction factor” ¢. More precisely, we require that

N < ¢N~, (59)

where N is the load acting on the pile with an assigned eccentricity and N* = dhay.

Generally, factor ¢ is dictated by governing regulations as a function of the slenderness of the pile and
the eccentricity of the load.

In our model, ¢ is precisely the ratio between the collapse load N, and N*; which, in light of (58), is given
by relation

2 2
T ny

b= (60)

Fig. 15 shows the values of ¢ as a function of 2L/d, for the pile of height 2L shown in Fig. 6 and the two
values of eccentricity, d/6 and d/3.5. The curves have been calculated using relation (60) for £ = 1 and
k = oo and setting £ = 10000, as suggested by Italian regulations. In order to discount cases of limited
practical interest, we have limited ourselves to considering 2L/d < 25.

0.8 q)

07 ] e=dl6 k=00

0.6

e=dl6 k=1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2L1d

Fig. 15. Capacity reduction factor for eccentricity values e, = d/6 and e, = d/3.5, for k =1 and k = cc.
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In the case of the previously analysed pile, from Fig. 15 for £ = oo we obtain
¢ =0.563 for e, =d/6,

¢ =03 fore =d/3.5,
and for k =1,
¢ =0.484 for e, =d/6,

¢ =0278 fore, =d/3.5.

5. Conclusions

A number of conclusions can be drawn by examining the curves in Fig. 13. Firstly, the critical load value
of a non-tension-resistant material depends heavily on the load eccentricity, even if the resistance to
compression is considered to be infinite (X curves). Moreover, by introducing a limit to the compressive
strength, the resulting value of the critical load for instability failure is considerably lowered (y curves).
Finally, any further limitation on the strain makes a different (conventional) collapse mechanism possible,
which may be triggered at load values below those determining instability.

The results obtained are summarised in the stability curves in Fig. 14. These allow the collapse load value
to be easily deduced for each value of the hypothesised maximum admissible strain. They reveal the ad-
vantage of the material’s having a certain degree of ductility under compression. It is worth noting that, for
small values of 4, a considerable increase in the collapse load value results from increasing k&, especially for
e; near d/6. In fact, as k is varied from 1 to +oo, the resulting collapse load increases by about 24%
for e, = d/3.5 and by 33.5% for e, = d/6.

Finally, by applying the model it is an easy matter to obtain curves like those shown in Fig. 15, from
which the capacity reduction factor, immediately useful in applications, can be deduced.
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