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Abstract

This work concerns the stability of piles with rectangular cross section, made of a no-tension material with limited

compressive strength and deformability, subjected to an axial load acting within the cross section but outside its middle

third (large eccentricity). The differential equations obtained have been solved explicitly, and their solutions have al-

lowed us to describe the stability characteristics of the pile through graphical representations.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The stability of masonry piles subjected to eccentric axial loads is a matter of a good deal of importance

to applications, though in practice the slenderness involved is apparently very modest. This fact is due to
the non-linear behaviour of the material, which is assumed to exhibit zero tensile strength, bounded

compressive strength and deformability, and values of elastic moduli very much lower than those of

concrete.

The load eccentricity may cause lateral deflection of the pile and a consequent increase in the bending

moment. Cracking of the load-bearing sections may then induce a gradual reduction of the bending stiffness

of the structure, until failure ensues. Such a mechanism may be triggered by either progressive instability, or

because the material�s limit strain has been exceeded, both of which situations would be induced by the
growing deflection of the beam.
The problem is a particularly complex one because of the inherent geometric and constitutive non-

linearities and, to date, has been solved analytically only by resorting to extreme simplifications. The
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earliest studies, dating back to the 1940s, treated masonry as a no-tension material with non-linear response

and infinite compressive strength, and represented the beam-column through a one-dimensional model

under the assumption that its cross section remains plane and orthogonal to the axis of the bent pile (see

Angervo, 1954; Chapman and Slatford, 1957; Frisch-Fay, 1975, 1981; Sahlin, 1971). A particularly inter-
esting solution is that explicitly deduced by Yokel (1971) for a prismatic beam-column made up of a no

tension material with infinite compressive strength loaded by an axial force applied at both ends.

In the present work Yokel�s results have been generalised to the case of a no-tension material with
bounded deformability and compressive strength. Although quite complex because of the introduction of

further constitutive non-linearities, such a generalisation makes this model more suitable to describing the

stability of some masonry piles loaded by a normal force acting eccentrically. As in Yokel (1971), we have

limited the study to piles with rectangular cross sections subjected to a normal force acting within the cross

section, and outside its middle-third; the case of a normal force acting within the middle third of the pile�s
end sections will be taken up in a subsequent work.

Firstly, we present the main characteristics of the original constitutive equation and we define the dis-

tribution of the axial stress component in the section as a function of the internal forces. A further de-

velopment of this topic is presented in Zani (2001).

Subsequently, the differential equation for the deformed shape of the compressed fibre of the pile is

developed. Explicit solution of this equation yields a load–displacement relation from which we can deduce

the stability characteristics of the pile, suitably represented by response curves. Then, we determine to what

extent an imposed limit to the maximum permissible strain on the material under compression reduces the
admissible range of the response curves obtained. Finally, we present an application of this model and show

how to calculate a load reduction factor, useful for checking masonry column subjected to eccentric vertical

loading.

2. The domain of admissible internal forces in the case of a no-tension material with limited compressive

strength and deformability

Firstly, we need to determine the distribution of the axial stress component in any given section of the

pile (Fig. 1(a)) as a function of the axial force, N, and the bending moment, M, under the assumptions

dictated by the constitutive model for uniaxial stresses shown in Fig. 1(b).

Fig. 1. (a) Pile section loaded by a normal force acting with eccentricity e. (b) Material constitutive model for uniaxial stress.
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Let us indicate as d and h the external dimensions of any given cross section of the pile, and set

N ¼ N
hdr0

and M ¼ M
hd2r0

; ð1Þ

with r0 (<0), the limit compressive stress of the material. It is well known that, in order for the axial
component r of the stress to satisfy the inequality r06 r6 0 at each point in the section, ðN ;MÞ must
belong to the region

X ¼ ðN ;MÞ j0
�

6N 6 1; M
�� ��6N

2
ðN � 1Þ

�
: ð2Þ

Under the Euler–Bernoulli hypothesis, for each ðN ;MÞ 2 X, the distribution of the axial stress component
in the section can be represented as in Fig. 2. It can therefore be thoroughly characterised by parameters a

and b, which represent the lengths of the segments where the stress is constant and linear, respectively. By

reason of symmetry, we can limit ourselves to specifying parameters a and b for the couples ðN ;MÞ, be-
longing to the region Xþ ¼ fðN ;MÞ 2 X jM P 0g.
To this end, it is helpful to consider the partition of Xþ made up of the open and disjoint subsets shown

in Fig. 3. These are bounded by the curves

C ¼ ðN ;MÞ j0
�

6N 6 1; M ¼ N
2
ðN � 1Þ

�
; ð3Þ

a ¼ ðN ;MÞ j0
�

6N 6
1

2
; M ¼ � 2

3
N
2 þ 1

2
N
�
; ð4Þ

b ¼ ðN ;MÞ j 1
2

�
6N 6 1; M ¼ � 2

3
N
2 þ 5

6
N � 1

6

�
; ð5Þ

r1 ¼ ðN ;MÞ j0
�

6N 6
1

2
; M ¼ 1

6
N
�
; ð6Þ

r2 ¼ ðN ;MÞ j 1
2

�
6N 6 1; M ¼ 1

6
ð1� NÞ

�
: ð7Þ

Fig. 2. Stress distribution in the pile section.
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In fact, it can be verified that

ðN ;MÞ 2 X1 ) a ¼ 0 and b ¼ dN

12M
þ d
2
; ð8Þ

ðN ;MÞ 2 X2 ) a ¼ 0 and b ¼ 3d
1

2

�
�M

N

�
; ð9Þ

ðN ;MÞ 2 X3 ) a ¼
d � 1þ N þ 6M
� �

2 1� N
� � and b ¼ 9dð�1þ N þ 2MÞ2

8ð1� NÞ3
ðfor N 6¼ 1Þ; ð10Þ

ðN ;MÞ 2 X4 ) a ¼ d N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3N 2 þ 3N � 6M

q� �
and b ¼ 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3N 2 þ 3N � 6M

q
: ð11Þ

In order to account for the material�s limited deformability as well, we assume the constitutive relation
described in Fig. 4(a), where eu (<0) is the limit compressive strain. For e ¼ eu, cracks are produced in the
more compressed portion of the section.

Let E be Young�s modulus for the material under compression; under the Euler–Bernoulli hypo-
thesis, with e0 ¼ r0=E the strain corresponding to the limit compressive stress on the section, we have

(Fig. 4(b))

em ¼ r0
E

aþ bð Þ
b

; ð12Þ

where em is the minimum strain on the section.
Therefore, by setting

k ¼ eu
e0
; ð13Þ

Fig. 3. Stress distribution in the regions of the admissible range.
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for ðN ;MÞ 2 X4, in light of (11) and (12) and with em ¼ eu, from (13), we obtain the relation

M ¼ 3Nð2k � 1Þ2 � 4N
2ð3k2 � 3k þ 1Þ

6ð2k � 1Þ2
: ð14Þ

While, for ðN ;MÞ 2 X3, in light of (10) and (12), once again from (13) we obtain

M ¼
ð1�NÞ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�NÞðð2k�1Þ�NÞ

p
þð1�3kÞþ2N

� �
6ð1�kÞ for k > 1;

1
6
ð1� NÞ for k ¼ 1:

8<
: ð15Þ

The curves delineated by (14) and (15) on the plane ðN ;MÞ have been plotted in Fig. 5 and represent the
boundary of the admissible range for each value of k.

Fig. 4. (a) Constitutive equation of the material for monoaxial stress states. (b) Strain pattern in the cross section.

Fig. 5. Boundary of the admissible range for each k.
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Of course, for k ¼ 1, Eqs. (14) and (15) coincide with (4) and (5), respectively, the equations of curves a
and b, while for k tending towards infinity, Eq. (14) tends to coincide with Eq. (3), the equation of the
boundary C of domain Xþ.

3. The pile loaded by an eccentric axial load

Let us now consider a pile of height 2L, made up of a no-tension material with limited compressive

strength and deformability, loaded by an axial load N applied at both end sections, parallel to, and at
distance e from the undeformed axis of the pile (Fig. 6). Both extremities are restrained with two hinges: as

shown in Fig. 6, the hinge where the load N is applied has the degree of freedom of vertical displacement.

Assuming, as always, that the cross sections remain plane and orthogonal to the deformed axis of the

pile, the strain has a linear pattern on the section. Moreover, since we suppose the load N to be acting

outside the middle third of the top section, we have d=66 e < d=2, and cracking occurs in all sections.
Let u be the distance of the load�s line of action from the compressed edge of the section; because of

bending, u varies along the pile�s height and attains its maximum value uL at the summit, and its minimum
u0 in the middle section, where the stress at the compressed border of the section moreover reaches its
maximum value.

Fig. 6. Scheme used to study the pile.
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Following the procedure set forth by Yokel (1971), in order to obtain the deformed shape of the pile, it is

more convenient to refer to the compressed border of the pile, rather than its barycentric axis. To this end,

let us adopt the coordinate system ðo; x; yÞ shown in Fig. 6, in which the origin is at the middle and the x-
axis is tangential to the most compressed fibre of the pile and parallel to the load�s line of action. Moreover,
we set

yðxÞ ¼ uðxÞ � u0; ð16Þ

so that yðLÞ ¼ uL � u0, where the value of uL ¼ d=2� eL is known.
During the loading process, as the load intensity increases, all sections become cracked.

If failure does not come about by instability due to buckling of the beam, the compressive stress will

reach the limit value r0, first at the middle section and subsequently in a growing segment of the pile ex-
tending upward to the summit.
Now, let N0 and NL be the values of N in correspondence to which the compressive stress reaches the

value of r0 at the middle section and at the summit of the pile, respectively. By virtue of the hypothesis that
the cross sections remain plane and orthogonal to the undeformed axis of the pile, together with the as-

sumed elastic response of the material all the way up to the maximum compressive stress r0, we can easily
verify that

N 0 ¼
3

2

u0
d
; NL ¼

3

2

uL
d
; ð17Þ

so that NL > N 0 always holds. Finally, let Nk be the maximum value of N compatible with the ductility

expressed by the ratio k, that is, the value in correspondence to which the ultimate strain eu is equal to ke0.
By substituting M ¼ Nðd=2� u0Þ into (14), with the positions (1), we obtain

Nk ¼
6ð2k � 1Þ2

1þ 3ð2k � 1Þ2
u0
d
: ð18Þ

As k tends to infinity, Nk tends towards the value

Nu ¼ 2
u0
d
: ð19Þ

By equilibrium considerations, it is an easy matter to deduce that Nu is the value of N in correspondence to

which the stress distribution at the middle section takes on the constant value r0. Nu is thus the maximum

value that N can attain, and this comes about when the internal forces ðN ;MÞ at the middle section of the
column represent a point on the boundary C of the admissible domain.

Contrary to NL, the values of Nu, Nk and N0 cannot be determined a priori once we know the load ec-

centricity at the summit, the geometrical dimensions of the pile and the mechanical characteristics of the
material. However, their values can be deduced through a relation between N and u0 which we now intend

to determine.

For N < N0, the compressive stress does not attain the maximum value r0 in any section of the pile;
under such circumstances, the stress distribution in the section is typical of region X2, and Yokel�s relation
(see, for example, Yokel, 1971) between N and u0 holds:

N
Neq

¼ 0:40528a
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
"

þ a ln

ffiffiffiffiffiffiffiffiffiffiffi
1� a

a

r 
þ

ffiffiffi
1

a

r !#2
; ð20Þ

where Neq ¼ �9p2Ehu3L=16L2 is the critical load of the compressed zone of the top section and a ¼ u0=uL is a
measure of the relative lateral displacement between the middle and the end section. The behaviour of
N=Neq as a function of a is shown in Fig. 7.
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It can be seen that every value of N=Neq has two corresponding values of a; in particular, for N=Neq ¼ 0,

a ¼ 1 represents the undeformed case (u0 ¼ uL), and a ¼ 0 the case in which u0 vanishes, which happens
when the load�s line of action is tangent to the compressed border of the middle section. In the right branch
of the curve, that is, for 0:625 < a6 1, which corresponds to a condition of stable equilibrium, we may
observe that as N increases, the deformation of the pile increases as well; thus u0 decreases, and with it, a as
well. For a ¼ 0:625, the maximum load, Ncr ¼ 0:285Neq bearable by the pile is reached. Values of N=Neq in
the interval 06 a6 0:625 are lacking of interest to applications because they correspond to large defor-
mation values that occur for loads smaller than the critical one, in an unstable equilibrium state.

Let us now suppose that N PN0 and denote s as the maximum ordinate at which the stress value at the

section�s compressed border equals r0.
Note that for N0 < N < NL, s < L. Thus, the half-pile is divided into the two segments, 0 < x6 s and

s < x < L, each of which is characterised by a local load distribution typical of regions X4 and X2, re-

spectively (see Fig. 8). For N > NL we instead have s > L, and the stress distribution in all sections of the
pile is that typical of region X4.

Denoting uðsÞ as the distance of the load�s line of action from the compressed edge of the section at

height x ¼ s, from considerations of equilibrium, it follows that

uðsÞ ¼ 2

3
Nd: ð21Þ

During the loading process, the internal forces relative to any given cross section describe a curve on the

plane ðN ;MÞ. Fig. 9 shows curves c0 and cL for the middle and top sections, respectively.
It can be seen that as N increases, the concavity of curve c0 turns upward up to the value N cr, which

represents the maximum load the pile can bear under stable equilibrium conditions. The subsequent branch

then shows decreasing values of N .
The loading process finishes when curve c0 intersects the ductility curve relative to the characteristic

value of k for the material; thus, we assume that the crisis of the pile takes place, as soon as the compressive

strain at the middle section attains its limit value eu. In particular, for k ¼ 1, curve c0 ends on a, while for
k ¼ 1, it ends on the boundary C of domain Xþ.

Thus, in this model failure is assumed to take place either because the limit compressive strain is reached

or by instability, depending on whether c0 intersects the material�s characteristic k-value curve for N < N cr.
The next step is to determine the relation between load N and distance u0 for N PN 0, as well.

.

.

.

. . . .
.

.

.

Fig. 7. Curve obtained by Yokel (1971) (Eq. (20)).

6198 A. De Falco, M. Lucchesi / International Journal of Solids and Structures 39 (2002) 6191–6210



To this end, let us set

u ¼ u1 for s < x6 L;
u2 for 06 x6 s;

�
ð22Þ

and consider an infinitesimally small element of the pile set at height x (Fig. 10). The length of the com-
pressed zone is equal to aþ b, with a and b determined by relation (11).

Fig. 8. For N PN0, the pile is divided into two segments, each corresponding to a stress distribution.

Fig. 9. Curves c0 and cL relative to the middle and top sections.
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From simple geometrical considerations, we can deduce that

d#

dx
¼ em

aþ b
; ð23Þ

where, as usual, em is the strain of the most compressed edge, and d# is the relative rotation between the two
end sections of the element.

By virtue of the hypothesis that all sections remain plane, we have

em ¼ eb
aþ bð Þ
b

; ð24Þ

where eb is the strain of the fibre at distance b from the neutral axis, and

eb ¼
rmin
E

for s < x6L ðregion X2Þ and eb ¼
r0
E

for 06 x6 s ðregion X4Þ; ð25Þ

with rmin the minimum compressive stress in the section.

Expressing d#=dx as a function of q, the curvature radius of the compressed pile fibre, we can obtain its
change in slope

d#

dx
¼ 1� emð Þ

aþ bþ q
: ð26Þ

By equating (26) to (23) and neglecting em with respect to the unit, in light of (24) and (25), with

rmin ¼ 2Ndr0=b, we have

q ¼ 1

2

Eb2

Ndr0
for s < x6 L ðregion X2Þ and q ¼ Eb

r0
for 06 x6 s ðregion X4Þ: ð27Þ

Moreover, as usual, let

Fig. 10. Infinitesimal beam element in 06 x6 s.
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1

q
¼ � d

2y
dx2

; ð28Þ

where yðxÞ ¼ uðxÞ � u0 is the transverse displacement of the compressed fibre. In light of (11) and (9), from
(27) we can deduce

d2u1
dx2

¼ � 2Ndr0
9E

1

u21
for s < x6 L;

d2u2
dx2

¼ � r0
2Ed

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3N 2 u2

d � N
� �q for 06 x6 s;

8>>>><
>>>>:

ð29Þ

with the conditions

du2
dx

ð0Þ ¼ 0;
du2
dx

ðsÞ ¼ #ðsÞ; u2ðsÞ ¼
2

3
dN ; ð30Þ

u1ðsÞ ¼
2

3
dN ;

du1
dx

ðsÞ ¼ #ðsÞ; u1ðLÞ ¼ uL; ð31Þ

(see Fig. 8), where #ðsÞ represents the rotation of the fibre at the compressed edge for x ¼ s.
Conditions (30)1 and (31)3 respectively impose that the tangent to the compressed border of the pile at

the middle section be vertical, and that the distance of the load�s line of action from the compressed edge at
the top section be uL. Both conditions assign the variables known values in a known position. Relations
(30)3 and (31)1 dictate continuity of the fibre at the compressed border at connection point x ¼ s, and assign
known values at sections whose positions are unknown. Finally, in (30)2 and (31)2, which express the

continuity of fibre rotation at the compressed border for x ¼ s, both the assigned values and the sections�
positions are unknown.

As our goal is to determine the relationship between the load parameter N and u0, we do not integrate
Eqs. (29)1 and (29)2 with conditions (30) and (31). Instead, we first integrate Eq. (29)2 with condition (30)1,

supposing the distance u0 of the load�s line of action from the compressed border of the middle section to be
known. In this way we obtain, du2=dx and x as a function of u2 for every N . We thereby deduce the values
of #ðsÞ and s from conditions (30)2 and (30)3.

Subsequently, Eq. (29)1 will be integrated with the two conditions, (31)1 and (31)2, and x determined as a

function of u1. Finally, by imposing condition (31)3, i.e., the top-section condition, we can arrive at the
desired relation between N and u0.
Thus, multiplying both members of (29)2 by 2du2=dx and integrating between 0 and x with condition

(30)1 and the additional condition u2ð0Þ ¼ u0, we obtain

du2
dx

� �2
¼ �r0

Ed
ffiffiffiffiffiffiffi
3N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u2
d
� N

r�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u0
d
� N

r �
; ð32Þ

from which

dx
du2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r0

Ed
ffiffiffiffi
3N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 u2

d � N
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 u0

d � N
q� �r : ð33Þ

Integrating this equation by separation of variables, we can easily obtain

x ¼ 2

3
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E

ffiffiffiffiffiffiffi
3N

p

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u2
d
� N

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u0
d
� N

r� �s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u0
d
� N

r�
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u2
d
� N

r �
: ð34Þ
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Now imposing condition (30)3, we obtain the value of x in correspondence to which compression r0 is
reached only at one point of the section�s compressed edge. We thus have

s ¼ 2

3
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E

ffiffiffiffiffiffiffi
3N

p

r0

ffiffiffiffi
N
3

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u0
d
� N

r0
@

1
A

vuuut
0
@� 2

ffiffiffiffi
N
3

s
þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u0
d
� N

r 1
A: ð35Þ

Now, from (32), in light of (35), and by imposing condition (30)2, we can deduce the rotation of the section

at height s,

#ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r0

E
ffiffiffiffiffiffiffi
3N

p

ffiffiffiffi
N
3

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
u0
d
� N

r0
@

1
A

vuuut : ð36Þ

In order to integrate (29)1, we multiply both members by 2du1=dx and impose condition (31)2, thereby
obtaining

du1
dx

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4
9

Nr0
E

3

2N
� d
u1

� �
þ #2

s
: ð37Þ

Using the method of separation of variables, we integrate both members of (37) between s and x with the

change in variable

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u1
cu1 � db

r
; ð38Þ

where c ¼ 3ð�2r0 þ 3E#2Þ and b ¼ �4Nr0.
Integrating the second member of (37) by parts, and setting

1

1� ct2
¼ 1

2ð1þ ffiffiffi
c

p
tÞ þ

1

2ð1� ffiffiffi
c

p
tÞ ; ð39Þ

in light of (31)1, we obtain

x ¼ 3d
ffiffiffiffi
E

p b
c

t
1

ct2 � 1

� ��
þ 1

2
ffiffiffi
c

p ln
1þ ffiffiffi

c
p

t
1� ffiffiffi

c
p

t

�tðxÞ
tðsÞ

þ s; ð40Þ

which, by virtue of (38) and (39) gives

x ¼ �d
ffiffiffiffi
E

p 4Nr0
� 2r0 þ 3E#2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�6r0 þ 9E#2Þu21 þ 4Nr0du1

q
�4dNr0

2
4

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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By substituting the integration limits, we have
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By then imposing condition (31)3, relation (42) furnishes the desired relationship between N and u0,
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The last relation can be conveniently written in dimensionless form. In fact, by indicating as NE ¼ p2EJ=4L2

the critical Eulerian load of a pile made of linear elastic material (Fig. 8), we have

N ¼ p2

12

n2

k2
; ð44Þ

with

n2 ¼ N
NE

; k ¼ 2L
d

ffiffiffiffiffi
r0
E

r
; ð45Þ

where parameters n and k are dimensionless: the first expresses the ratio between applied load and the
corresponding Eulerian critical load, while the second, which summarises all the beam�s geometric and
mechanical properties, can be interpreted as a measure of its slenderness.

In light of (44) and (45), and by putting

a0 ¼
u0
d
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uL
d
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; ð46Þ

relations (35), (36) and (43) become

s ¼ 2

3
dp2

n2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2

1

6
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

k2

p2n2
� 1

12

s0
@

1
A

vuuut
0
@� 1

3
þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

k2

p2n2
� 1

12

s 1
A; ð47Þ

A. De Falco, M. Lucchesi / International Journal of Solids and Structures 39 (2002) 6191–6210 6203



# sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
1

3
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

k2

p2n2
� 1

12

s0
@

1
A

vuuut : ð48Þ

ffiffiffiffi
m

p
p2

3

n2

k2

3 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �
a2L � p2

3
n2

k2
aL

s

p2

3

n2

k2

8>>>>>>><
>>>>>>>:

þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �s ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �
aL �

p2

3

n2

k2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �
aL

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �
aL �

p2

3

n2

k2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

q� �
aL

s�����
�����

2
666664

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

qr
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

k2

p2n2
� 1

12

rs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

k2

p2n2
� 1

12

rs
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0 k2

p2n2 � 1
12

qr������
������

3
77777775
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

k2

p2n2
� 1

12

s0
@

1
A

vuuut

9>>>>>>>=
>>>>>>>;

þ s
d
� L
d
¼ 0:

ð49Þ

And finally, by setting
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from (47)–(49), we have
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Of course, in view of (17), (45) and (46), from (53) we deduce that d ¼ 0 for N ¼ NL and therefore s ¼ L.
For N < N0 relation (20), obtained by Yokel (1971) for the case of a normal force acting outside the

middle third of the section, with positions (44)–(46), can be written in dimensionless form, for which we

obtain
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The response curves, respectively expressed as (53) and (54), when N PN0 and N < N0, are presented in
Fig. 11 for aL ¼ 1

3:5
and k ¼ 1.

In particular, observe that, for N ¼ 0, we have a0 ¼ aL, and the pile remains undeformed. As N increases,

we first move along curve R, delineated by (54) for a material with infinite compressive strength, until the
value N ¼ N 0 is reached. This occurs at n2 ¼ n20 where

n20 ¼
18

p2
k2a0; ð55Þ

as can be deduced from (17), with the help of (44)–(46). Then, for any given value of k, curve R loses its

meaning when it intersects the line of equation n2 ¼ ð18=p2Þk2a0.
For N PN 0 (that is, for n2 P n20), the relation between n2 and a0 is represented for each value of k by a

curve, c, implicitly defined by Eq. (53).
The maximum value n2cr of c is reached when a0 ¼ a0cr, and this is the load value at which the beam

collapses due to equilibrium instability before the section can undergo crushing.

The couples ða0cr; n2uÞ, relative to different values of k, may determine a point of either R or k. In the first
case, instability of the pile equilibrium takes place when the stress distribution in the section is typical of
region X2, however without the stress� reaching the value r0 (ncr6 n0) in any section whatsoever. In the
second case, instability of the pile equilibrium takes place when compression r0 is attained in the pile
sections next to the middle and the stress distribution is typical of region X4.

The part of the curve with a0 < a0cr are of no concern to applications because it corresponds to large
deformation values occurring for loads below the critical load, in a state of unstable equilibrium.

Fig. 11. Analysis of a response curve for k ¼ 0:325 and eL ¼ d=3:5.
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For small enough values of k, curve c ends when the stress distribution at the middle section of the
column takes on the constant value r0. This corresponds to the extreme value Nu, where c intersects the line
whose equation is

n2 ¼ 24

p2
k2a0; ð56Þ

as can be deduced from (19), with the help of (44)–(46).

Under such circumstances, the locus of points whose coordinates ða0u; n2uÞ are obtained from the inter-

section of c with the line of Eq. (56) is the curve K in Fig. 11. The explicit equation of K can be obtained by
substituting the expression for k, deduced by Eq. (56), into relation (53). For large enough values of k, the
end points of curves c belong to R.
Moreover, it can be observed that, for a fixed value of aL, a value k exists, such that the critical load for

kP k is reached while still along curve R. In fact, what occurs is that beyond a certain value of slenderness,
collapse of the beam comes about due to instability of the equilibrium, without however the stress ever

reaching the value r0 in any section whatever.
Finally, with increasing slenderness k, the response curves c tend to move along ever more extensive

segments of curve R, until they are finally superimposed upon it. In other words, from a certain value of k
onwards, the beam behaves as if it were made of a material with infinite compressive strength.

The considerations advanced up to now are valid in the event that the ductility parameter k has an

infinite value, as was assumed when drawing Fig. 12, where families of response curves have been repre-

sented for eL ¼ d=3:5 and different values of k.
Instead, when k has a finite value, the validity of curve c ends at its intersection with the limit curve v, the

locus of points corresponding, for any value of k, to collapse of the pile by attainment of the ultimate strain.
For any given value of eL the implicit form of the expression for curve v, corresponding to any given

value of k, is obtained (in a manner analogous to K) by calculating the coordinates of the intersection point
between curve c and the line of equation

Fig. 12. Response curve family (n2 versus a0) for different values of k and for eL ¼ d=3:5.
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n2 ¼ k2

p2
72 2k � 1ð Þ2

1þ 3 2k � 1ð Þ2
a0; ð57Þ

obtained from (18) with the help (44)–(46).

The family of curves shown in Fig. 13 describes the behaviour of the pile for k ¼ 1:5 for two different
values of eccentricity at the summit: eL ¼ d=3:5 and eL ¼ d=6.
It can be noticed that, regardless of the eccentricity value eL, the dashed half-lines of Eq. (57) pass

through the extreme points of the c curves corresponding to the same value of k.
From the curves in Fig. 13, we can plot the stability curves illustrated in Fig. 14, which show the be-

haviour of the ratio between failure load Nc and load N � ¼ dhr0 as a function of parameter k. The collapse
load is represented by the value of either the limit load for instability or the breaking load due to reaching

the limit strain, whichever is lower.

In view of (54), with positions (44)–(46), we have

Nc

N � ¼
p2

12

n2c
k2

; ð58Þ

where n2c is the ratio between the collapse load and the Eulerian load of the pile.
For each value of eL, we present two curves, relative to the values k ¼ 1 and k ¼ 1. It can be seen that,

for slenderness values tending towards zero, load Nc tends towards the collapse load because the limit strain

value is reached. In particular, for k ¼ 1, failure occurs when the maximum stress r0 is reached at one end

Fig. 13. Response curves of load–displacement corresponding to the eccentricity values eL ¼ d=6 and eL ¼ d=3:5, for k ¼ e0=eu ¼ 1:5.
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of the middle section, and we have Nc=N � ¼ 3=2aL. These curves are analogous to those calculated by

Angervo (1954) and generalised by Sahlin (1971), under the hypothesis that the material exhibits linear

elastic behaviour under compression up until crushing. Instead, for k ¼ 1, failure comes about by crushing

when the stress distribution in the compressed section is constant at a value of r0, and Nc=N � ¼ 2aL.

For increasing values of slenderness, the ratio Nc=N � decreases, and for each value of eL, there is a value
of k beyond which the two curves relative to k ¼ 1 and k ¼ 1 coincide. Clearly, the interval between these

two curves contains the situations relative to all values of k > 1.

Once these curves have been plotted for a large enough number of values of eccentricity eL and para-
meter k, as the geometric ðd; h; LÞ and mechanical ðE; r0euÞ characteristics of the beam are known, it is

possible to calculate the critical load value as a function of k for each value of the assumed limit strain.

4. Applications

By way of example, we shall now illustrate application of the model to the study of compressed piles. To

this end, let us consider the case of a pile, constrained as in Fig. 6, whose features are typical of Italian
renaissance cloisters and arcades.

Given the following parameter values:

2L ¼ 5 m; b ¼ d ¼ 0:4 m; r0 ¼ 6 MPa; E ¼ 6000 MPa;

the corresponding slenderness value is k ¼ 0:39 and the critical Eulerian load is NE ¼ 168:4� 104 N.

Now, we intend to compare the limit load of the pile in the case of infinite compressive strength with that
for limited compressive strength, for both infinite and limited ductility and the two values of load eccen-

tricity, eL ¼ d=6 and eL ¼ d=3:5. For the case of infinite compressive strength, with the help of the curves in
Fig. 13, we obtain

Ncr ¼ 89:7� 104 N for eL ¼ d=6;

Fig. 14. Stability curves corresponding to the eccentricity values eL ¼ d=6 and eL ¼ d=3:5 for k ¼ 1 and k ¼ 1.
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Ncr ¼ 46:4� 104 N for eL ¼ d=3:5:

In the case of limited material compressive strength, from the curves in Fig. 14, for k ¼ 1 we obtain

Ncr ¼ 18� 104N for eL ¼ d=6;

Ncr ¼ 9:6� 104N for eL ¼ d=3:5;

and for k ¼ 1,

Ncr ¼ 15:5� 104N for eL ¼ d=6;

Ncr ¼ 8:9� 104N for eL ¼ d=3:5:

We may observe, that at least for the two analysed cases, introduction of a limit to the material�s com-
pressive strength has a considerable effect on the critical load of the pile, more than further limiting its

deformability.

In applications, in order to perform a simple check of the stability of piles subjected to eccentric axial

loads, we apply the so-called ‘‘capacity reduction factor’’ /. More precisely, we require that

N 6/N �; ð59Þ
where N is the load acting on the pile with an assigned eccentricity and N � ¼ dhr0.
Generally, factor / is dictated by governing regulations as a function of the slenderness of the pile and

the eccentricity of the load.

In our model, / is precisely the ratio between the collapse load Nc and N �; which, in light of (58), is given

by relation

/ ¼ p2

12

n2c
k2

: ð60Þ

Fig. 15 shows the values of / as a function of 2L=d, for the pile of height 2L shown in Fig. 6 and the two
values of eccentricity, d=6 and d=3:5. The curves have been calculated using relation (60) for k ¼ 1 and

k ¼ 1 and setting E ¼ 1000r0, as suggested by Italian regulations. In order to discount cases of limited
practical interest, we have limited ourselves to considering 2L=d 6 25.

Fig. 15. Capacity reduction factor for eccentricity values eL ¼ d=6 and eL ¼ d=3:5, for k ¼ 1 and k ¼ 1.
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In the case of the previously analysed pile, from Fig. 15 for k ¼ 1 we obtain

/ ¼ 0:563 for eL ¼ d=6;

/ ¼ 0:3 for eL ¼ d=3:5;

and for k ¼ 1,

/ ¼ 0:484 for eL ¼ d=6;

/ ¼ 0:278 for eL ¼ d=3:5:

5. Conclusions

A number of conclusions can be drawn by examining the curves in Fig. 13. Firstly, the critical load value

of a non-tension-resistant material depends heavily on the load eccentricity, even if the resistance to

compression is considered to be infinite (R curves). Moreover, by introducing a limit to the compressive

strength, the resulting value of the critical load for instability failure is considerably lowered (c curves).
Finally, any further limitation on the strain makes a different (conventional) collapse mechanism possible,

which may be triggered at load values below those determining instability.

The results obtained are summarised in the stability curves in Fig. 14. These allow the collapse load value

to be easily deduced for each value of the hypothesised maximum admissible strain. They reveal the ad-
vantage of the material�s having a certain degree of ductility under compression. It is worth noting that, for
small values of k, a considerable increase in the collapse load value results from increasing k, especially for

eL near d=6. In fact, as k is varied from 1 to +1, the resulting collapse load increases by about 24%

for eL ¼ d=3:5 and by 33.5% for eL ¼ d=6.
Finally, by applying the model it is an easy matter to obtain curves like those shown in Fig. 15, from

which the capacity reduction factor, immediately useful in applications, can be deduced.
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